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SUMMARY

The general coalescence-dispersion (C/D) closure provides phenomenologi-
cal modeling of turbulent molecular mixing. The models of Curl (ref. 1) and
Dopazo and O0'Brien (ref. 2) appear as two limiting C/D models that "bracket"
the range of results one can obtain by various models. This finding is used
to investigate the sensitivity of the results to the choice of the model.
Inert scalar mixing is found to be less model-sensitive than mixing accompa-
nied by chemical reaction. Infinitely fast chemistry approximation is used to
relate the C/D approach to Toor's earlier results (ref. 3). Pure mixing and
infinite rate chemistry calculations are compared to study turther a recent
result of Hsieh and 0'Brien (ref. 4) who found that higher concentration
moments are not sensitive to chemistry.

1. INTRODUCTION

The modeling of molecular mixing is a known stumbling block of turbulent
combustion theory (0'Brien, ref. 5). Until recently three closure models were
available: the closure introduced by Dopazo and 0'Brien (ref. 2), the closure
of Janicka et al. (ref. 6), and the coalescence-dispersion model of Curl
(ref. 1).

Since Curl's mixing model was developed within a different context its use
for closure is a phenomenological step that can only be rationalized by compar-
ison to data and some physical reasoning. In view of some encouraging results
(Pope, refs. 7 and 8; Wu and O'Brien, ref. 9; Kollmann and Janicka, ref. 10;
Givi et al., refs. 11 and 12; Nguyen and Pope, ref. 13; Hsieh and 0'Brien,
ref. 4) and of the calculational advantages of the model (Pope, ref. 14), there
is a clear incentive to investigate, and possibly improve, its validity.

In the wake of the earlier publications of Pope (ref. 15), Janicka et al.
(ref. 6), and Dopazo (ref. 16), Pope (ref. 17) introduced a generalized
coalescence-dispersion (C/D) model. The closure models of Janicka et al.
(ref. 6) and Curl (ref. 1) can be recovered from the generalized model as
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special cases. Recently Kosaly (ref. 18) showed that the Dopazo-0'Brien
(ref. 2) closure recovers from the general C/D closure model.

By introducing a generalized C/D model Pope (ref. 17) introduced a family
of models with the earlier models appearing as "members of the same family."
This step made C/D modeling more flexible than before. The existence of numer-
ous models allows more room for data fitting and physical reasoning.

Since we have now numerous C/D models, the problem of sensitivity is to
be addressed. Are the final results sensitive to the differences between dif-
ferent models? Are the differences large enough to invoke experimental stud-
jes to decide between various models? What kind of experiments are to be
performed to decide between the different models? This paper addresses these
questions.

The present paper discusses general coalescence-dispersion modeling. The
necessary background is reviewed in section 2. Section 3 discusses the mixing
of an inert scalar in the spatially homogeneous case and in the strongly space
dependent case of a round jet discharging into quiescent surroundings. C/D
modeling in the limiting case of infinitely fast chemistry is investigated in
section 4. 1In this section, the C/D results are compared to the noted result
of Toor (refs. 3, 19, and 20) who established a relationship between the aver-

age reactant concentration and the decay of the variance without reaction.!
Section 5 discusses the behavior of the higher moments of concentration in the

fast chemistry case and in the case of pure mixing. The main results of the
work are summarized in section 6.

2. BACKGROUND

We first consider the simple case of a passive scalar inhomogeneous incom-
pressible turbulent flow and simplify the matter further by assuming that the

scalar is initially homogeneously distributed in space. Let «(Xx,t) be the
scalar and p(y,t) its pdf.2

The general coalescence-dispersion (C/D) model is defined by the follow-
ing evolution equation (Pope, ref. 17):

+o

apfy,t) ™ L) o _2pwp(y.t) + 2B ” dy'dy" p(w',t)p(w,t)
+co
| dam@sfy - 0 - et - atv en] @)

The function A(a) 1is zero outside [0,1], nonnegative and normalized to
unity within [0,1]. The parameter B 1is defined by Pope (ref. 17) as

Twhereas the original derivations are contained in references 19 and 20,
most of the time we will refer to reference 3 where Toor reviews both the ear-
lier derivations and the related experimental work.

2Throughout the paper we will interchangeably refer to this case as the
homogeneous (temporal) problem or the plug-flow (spatial) problem (Hill,

ref. 21).
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In the Monte-Carlo simulation of equation (la), the random variable a
controls the extent of mixing which takes place when a "particle-pair" is
selected for interaction. A(a) 1is the probability density function of «
(Pope, ref. 17). The present paper discusses the evolution of p(y,t) regard-
less of the numerical technique applied for solution, therefore there will be
no reference to "particles" in this work.

The RHS of equation (1a) represents molecular mixing in the C/D approxima-
tion. The convective term is missing from the equation because of the assump-
tion of spatial homogeneity.

Multiplying equation (la) by ¢2 and integrating, the time evolution of
the standard deviation can be obtained. The result is

t
o(t) = o(0) expl- J w(t') dt' (2)
0

Equation (2) identifies the mixing frequency as

oft) = 20— | (3)

2
A, (t)

where D s the diffusion-constant and A (1) 1is the Taylor-iength associ-
ated with the mixing of the scalar. (Tennekes and Lumley, ref. 22).

The present work does not address the problems related to tre determina-
tion of the Taylor-length, that is, we assume that the mixing frequency is
known. Regarding the evaluation of the mixing frequency we refer to the liter-
ature (Corrsin, ref. 23; Beguier et al., ref. 24; Pope, ref. 25).

In order to complete the closure the function A(a) 1is to be specified.
different choices of A(a) result in different C/D models. The original Curl-
model (ref. 1) can be recovered by employing A(a) = 3(a - 1). The closure
suggested by Janicka et al. (ref. 6) is equivalent to using A(a) = 1 within
0 <a < 1. There is obviously an infinite number of choices, each leading to
a different C/D model.

In a recent paper Kosaly (ref. 18) considered the case when the mixing
frequency is independent of time and initial pdf is the sum of two delta func-
tions at ¢ = #1.

P(v,0) = 38(w = 1) + 3 (¥ + 1) (4)




From equations (1a) and (4) the short time form of the pdf was derived.

Ply,t) = 3 [8(1 - 9) + 801 + W11 - Bot) + F(w)But + 0(u’t?)
(5)

F¥) = 3 TACT - %) + AQ + )]

The first term on the RHS describes the gradual decrease of the spikes at
v = +1. The second term accounts for the build up of the pdf in the initial
phase of mixing. The appearance of the A(a) function in the second term
shows that the behavior of this function is intimately related to the physics
of mixing for ot << 1.

Physical arguments based on equation (5) led Kosaly (ref. 18) to the con-
clusion that any physically acceptable A(a) function has to peak at a« =0
and decrease monotonically in 0 < a < 1.

Since neither A(a) = 8(a - 1), nor A(a) =1 satisfy the above physical
requirement, they are clearly unphysical choices. On the other hand, it is
not clear, how far the end results are sensitive to the choice of A(a).
Indeed Kolimann and Janicka (ref. 10) report weak sensitivity to this choice
in the case of the mixing of a passive scalar in turbulent shear flow. Hsieh
(ref. 26) applies the models of Janicka et al. (ref. 6) and Curl (ref. 1) to
the half-heated grid problem and finds similar results, while the Curl approach
is usually less demanding on computer resources. The present paper discusses
the above sensitivity issue via the examples of inert scalar mixing and the
conserved scalar approach to reactive turbulent flows with fast chemistry.

As further background information we review a result of Kosaly (ref. 18)
who showed that if A(a) has a sufficiently narrow peak at « = 0, in the
sense that3

a
2
£« (6)

1

then equations (1a) and (1b) go over into

a
L) L (1) %; [(w - <¢>)p(w.t)] + °<%%) (M

Here (@) represents the ensemble average of the random process e(x,t).
Under the present assumptions this average is independent of time and posi-
tion. The mixing frequency, however, may depend on time.

Neglecting 0(ap/ay) on the RHS, equation (7) becomes identical to the
approximate evolution equation derived by Dopazo and O'Brien (ref. 2). It
turns out therefore that the Dopazo-0'Brien prediction is equivalent to C/D
modeling via an A(a) function with a sufficiently narrow peak at o« = 0,

3Note that ap > a3 > ag . . ., therefore for n > 2, ap/ay < ap/ajy.




where "narrowness" is defined by equation (6). The result ic indeed independ-
ent of the actual choice of A(a). For the sake of mathematical convenience

we will be using
A(a) = §(a — €), € » +0 (8)

to recover the Dopazo-0'Brien model from the general C/D formalism.

We are now in the position to derive general results referring to al}l
existing closure models. It is interesting to note that the models of Curl
(ref. 1) and Dopazo and 0'Brien (ref. 2) appear as two opposite limiting cases.
A(a) = 8§(a - 1) 1is clearly the most extreme of all the curves who peak at
a = 1 and decrease as a decreases to zero. A(/a) = &(a - €), ¢ » +0, on the
other hand, is the extreme representative of the physically acceptable shapes
who peak at « = 0 and decrease with increasing values of «. The A(a) =1,
0 < a <1 choice (Janicka et al., ref. 6) can be considered to be halfway
between the two extreme choices. In the forthcoming numerical work we will
use the above three choices to investigate the sensitivity of the results to
the A(e) model.

The fact that the Dopazo-0'Brien model can be presented as one of the C/D
models should not create the misunderstanding that it is arbitrary as, e.g.,
the Curl-model. While Curl's model has never been derived theoretically as a
closure model for turbulent molecular mixing, the Dopazo-0'Brien closure does
follow from first principles even if under rather limiting assumptions (Dopazo
and 0'Brien, ref. 2); Pope, ref. 27; and 0'Brien ref. 5). On the other hand,
using e.g., Monte-Carlo techniques, Curl's model proves to be the least demand-
ing on computer resources, while the strict implementation of the Dopazo-
0'Brien closure requires infinite computing time. This circumstance
emphasizes further the need for sensitivity studies.

3. MIXING OF AN INERT SCALAR

In recent years several authors used C/D modeling to predict experimental
data (Wu and 0'Brien, ref. 9; Kollmann and Janicka, ref. 10; Givi et al.,
refs. 11 and 12; Nguyen and Pope, ref. 13; Hsieh and 0'Brien, ref. 4). For
A(a) either the Curl model (ref. 1) or the model of Janicka et al. (ref. 6)
were used, both of which are physically objectionable. In spite of this, the
predictions turned out to be fairly encouraging indicating that the calculated
end results may not be sensitive to the A(a)-shape.

In order to seek insight into the sensitivity problem we first consider
the case described by equation (1a), that is, the mixing of an initially homo-
geneously distributed inert scalar in incompressible, homogeneous turbulent
flow. 1In this case the evolution of the pdf is governed exclusively by molecu-
lar mixing and not be the combined influence of molecular mixing and turbulent
convection. The spatially homogeneous case is therefore more sensitive to the
details of the molecular mixing model than the space dependent cases.

If the initial scalar field is binary, equation (5) demonstrates that
immediately after the mixing starts the shape of the pdf is directly deter-
mined by the actual A(a) shape.

In order to study the problem for finite times we define the .noments, cen-
tral moments and standardized moments of ¢(x,t), in order, as
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Here o(t) = +/up(t), is the standard deviation of the scalar.

We simplify the mathematics by assuming that the mixing frequency does not
depend on time and obtain from equations (1a) to (1c) the following results:

(@1, = (@) (10a)
up(t) = o (1) = o (0)e 2" (10b)
uy(t) = uy(0)e > (10¢)

_ -aut|f, a4 3 2.2\ yot _.f, 22 ., 2 , 2 4
u4(t) =e [(((p )0 4¢p) ey )o + 3o )o)e 3<(<p )O 2<y )o((p) + (@) )]

(10d)
Here vy 1is related to the moments of A(a) as (Kosaly, ref. 18)
a, + 1 a, - a
Hh "2
The skewness (33(t)) and the kurtosis (34(t)) can be writ*en as
ua(t) = ¥4(0) (11a)
B, (0) = (3 + 5,00 - 3 (11b)

The results refer to arbitrary initial distribution of the scalar and
arbitrary A(a) shape. Inserting A(a) = &(a - 1) the early results of Curl
(ref. 1) can be recovered.

Equations (10a) to (10c) show that the first three moments are independ-
ent of the A(a) choice. It is only the fourth moment that depends on the
A(a) shape through the parameter vy. All models with y > 0 yield ug » o
as t - o,




Table I shows the vy values corresponding to A(a) = &(a - 1), A(a) =1
and A(a) = 8(a - €), ¢ » +0. In the third column the corresponding kurtosis
(ugq) values are given at ot = 1.0, assuming binary initial distribution.
While the A(a) shapes of Curl (ref. 1) and Janicka et al. (ref. 6) differ
considerably, the corresponding y values are relatively close, resulting in
a mere 21 percent difference between the kurtosis values. This difference is
indeed small compared to the corresponding difference between the Curl and the
Dopazo-0'Brien values. This finding suggests that, no matter how different
the models of Curl (ref. 1) and Janicka et al. (ref. 6) seem to be, one does
not expect substantial differences when applying these two models (Hsieh,
ref. 26). Differences can, however, be expected between Curl's model and the
models with powerful peaks at « = 0, represented in Table I by the extreme
case of the Dopazo-0'Brien model.

Figure 1 shows the pdfs at ot = 0.96 calculated using a Monte-Carlo rou-
tine via the models of Curl (ref. 1) and Janicka et al. (ref. 6) and a third
pdf corresponding to A(a) = 8(a - ag), ag = 0.1.% The latter shape was chosen
to represent the Dopazo-0'Brien (ref. 2) closure, while keeping the computa-
tional time within acceptable 1imits.® Since one knows that with the binary
initial condition given in equation (4) the Dopazo-0'Brien pdf can be written
as (0'Brien, ref. 5).

plv.t) = 3 8™ -y + T8 + y) (1)

it is easy to reco%nize the two peaks as approximations of the two deita func-
tions at ¢ = te”wl = +0.38.

Figure 1 suggests similar conclusions as the data in Table I. Except for
the sharp peak at ¢ = 0 in the Curl pdf, the models of Curl (ref. 1) and
Janicka et al. (ref. 6) predict roughly similar behavior. They, however, both
differ markedly from the Dopazo-0'Brien (ref. 2) curve, which is to be consid-
ered as an extreme representative of the models peaking at o« = 0.

The time evolution dictated by equation (11) is clearly nonphysical
(0'Brien, ref. 5). This does not necessarily mean that the Dopazo-0'Brien
model may not give correctly moments, or even the pdfs, in cases that are more
involved than the mixing of two spikes in homogeneous turbulence (Dopazo,
ref. 16).

We consider next a two-dimensional, stationary, incompressible, turbulent
round jet discharging into quiescent air. Injected into the flow is an inert
scalar whose value is taken to be unity in the nozzle and zero in the surround-
ing air. We present the pdf equation in its general form, although polar-
cylindrical coordinates with azimuthal symmetry will be usea.

Let again ¢(x,t) be the scalar and p(y,x) its pdf. The pdf does not
depend on time because of stationarity. We write the pdf equation using the

4Note that for binary mixing Curl's model yields a discrete distribution
(ref. 17). The continuous line in figure 1 represents the normalized histo-
grams in the usual way.

SIn the numerical simulations, the pdf is modeled by an ensemble of
20 000 Monte-Carlo elements. The slight asymmetry of the pdf around ¢ = 0 is
due to the statistical errors associated with the finite number of computa-

tional elements.
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gradient diffusion approximation to model the convective term and the general-
jzed C/D model to account for molecular mixing (Nguyen and Pope, ref. 13).

3 3 3
5;1- (Uyp) = 5;(—1- <"T S;Li‘>+ MM(w,x) (12)

Here U;5(i = 1,2,3) are the components of the time averaged velocity, vy s
the eddy diffusivity of the scalar. MM(y,x) 1is defined by the RHS of equa-
tion (1a). Equation (1a) can be recovered from equation (12) by setting the
eddy-diffusivity term equal to zero and writing U, = U3z = 0 in the convective
term (x7 = Ugt).

The pdf equation is supplemented by the modeled equations for the mean
flow and the k - ¢ transport equations. The eddy-diffusivity and the mixing
frequency are calculated as

k2 £
vy = 0.09 P © =y (13)
For more details we refer to Jones and Whitelaw (ref. 28) and Givi et al.
(ref. 11).

The closure is again not complete without specifying the A(a)-function
within the molecular mixing term. Results will be shown using the same three
models as before. The Dopazo-0'Brien model again will be represented by
A(a) = 8(a - ag), g - 0.1.

Figures 2(a) to (d) show the radial dependence of the first four moments
of the scalar at x = 100 downstream from the nozzle for the different A(a)
choices. (The second, third, and fourth moments on the figures are divided by
the respective powers of the first moment at the centerline of the jet.) R
is the radial distance divided by the jet half-width r1’2(x). The latter
quantity is defined as the radial position at which the mean axial velocity is
equal to the arithmetic average of the centerline and free stream velocities.

Whereas in the spatially homogeneous case (plug-flow reactor) the time
(space) dependence was determined exclusively by molecular mixing, presently
convection plays an important role. We expect therefore the results be less
sensitive to the choice of A(a) than before.

Figures 2(a) to (c) show that the first three moments are model independ-
ent, an obvious results, since these moments were found to he independent of
the A(a) shape even in the homogeneous case. (cf. eqs. (10a) to (10c).)
Figure 2(d) shows, however, that the fourth moment is different for the differ-
ent models, as expected (cf. eqs. (10d) and (10e)). The figure again demon-
strates the approximate equivalence of the Curl and Janicka et al. models and
the opposite extreme nature of the Curl model vis-a-vis the Dopazo and 0'Brien
closure.

The influence of the difference in the fourth moments can be clearly seen
in figure 3. Figures 3(a) to (c) show the pdf of the scalar across the width
of the shear layer at x = 10D. Figure 3(d) presents the pdf at x = 10D and
at the radial location R = 0.8. The smaller the fourth moment, the smaller
the kurtosis value becomes, making thereby the Dopazo-0'Brien pdf markedly
flatter than the Curi-curve.




Generally speaking, however, the difference between the Curl and the
Dopazo-0'Brien pdfs is not as dramatic as seen on figure 1. This is due to
the influence of the convection term which diminishes the sensitivity of the
results to the details of the molecular mixing model.

By considering mixing in homogeneous flow and in a two-dimensional jet we
are looking at two rather extreme cases. The two-dimensional jet case is
extremely insensitive to the details of the molecular mixing model. One
expects to see stronger dependence on A(a) in nearly homogeneous cases like
temperature mixing in incompressible flow over a half heated grid (Wu and
0'Brien, ref. 9).

 4. REACTIVE FLOW IN THE FAST CHEMISTRY LIMIT

We consider a second-order, irreversible, one-step, isothermal reaction
of the type

A + B » products (14)

and assume that the turbulence is homogeneous and incompressible and ignore
any dynamic or chemical role the products may play. We assume furthermore
that the two species are initially homogeneously distributed in space. Let
A(x,t) and B(x,t) be the concentrations of the species and pp(c,t), pg(c,t)
and PA'B(C'.C".t) their marginal and joint pdfs, respectively.

It was shown by several authors (Toor, ref. 3; 0'Brien, ref. 29) that if
the diffusion coefficients of the two species are equal (Dy = Dg = D), then

J(x,t) = A(x,t) - B(x,t) (13)

is a conserved scalar, that is, it satisfies the diffusion equation without
chemical source term.

In case of infinitely fast chemistry (Toor, ref. 3; 0'Brien, ref. 29,
Bilger, ref. 30), the random concentration fields of the two reactants can be
related to the J(tx) as

J; >0 0; J>0
A= B = (16)
0; J <0 -J; 3 <0
Following 0'Brien (ref. 29), we write
palc,t) = pyc,t) + ka(t)s(c)
(17a)
pg(c,t) = py(-c,t) + kg(t)é(c)
Here ¢ > 0, py(c,t) 1is the pdf of J(x,t) and
© 0
k(1) = IOpJ(—c,t) dc = J_mpa(c,t) dc
(17b)

o«

kg(t) = Iopa(c,t) de = 1 - ky(t)

9



Let us assume not that at t = 0 the two species are totaliy segregated.
We write the joint pdf at the initial time,

pA.B(c',c“,O) = Wpd(c' - cpp)d(c") + Wpd(c')d(c" - cgp) (18)
Wp + Wg =1
Here cpg, cgg are the respective initial concentrations of the two species.
The weight factors WA, WB represent area-ratios at the inlet in the plug-flow
case.
Using equation (18) the initial distributions of A and B become
Pa(c,0) = Wpd(c - cpp) + Wgd(c) (19a)
pg(c,0) = Wgd(c - cgg) + Wpd(c) c>0 (19b)
We compare equations (19a) and (19b) to equation (17a) and obtain
pjy(c,0) = WAS(c - cAD) + WB&(c + cBO) o < ¢ <@ (20)

Let us assume furthermore that the reacting species are present in stoi-
chiometric proportion and write:

1 -
Wy = Wy =3 = C (21)

a0 T B0 T %o

Because of equation (21), pj(c,t) is an even function of ¢ for t > 0.
We introduce the new variable ¢ = c/co and obtain from equations (17a),
(17b), (20), and (21):

PA(¥:t) = Pgl,t) = py(w,t) 3 8(v) (17')

py(,0) = 3 8y - 1) + 3 8(y + 1) (201)

Equation (20') is the same initial condition that was considered in
equation (4). It follows from equations (17') and (20') that

(-]

Wy =< [ wy(u.) d (222)
Ay ®
Ay = 2| wpylw,t) dy (22b)
(o]
0

where the bracket denotes ensemble averaging.

In the general C/D model of molecular mixing the pdf pj(¢,t) satisfies
equations (1a) to (1c) and equation (20'). The mixing frequency is related to
the diffusion constant and the Taylor-length scale of J(x,t) by equation (3).
The closure is to be completed by the choice of an A(a)-shape.

10




Let us discuss now a new aspect of A(a)-modeling by referring to a noted
result of Toor (ref. 3), who related the average reactant concentration to the
standard deviation of J(x,t) by the following relationship:

(A)
t _ oft)
(A)0 ~ a(0) (23)

Here o(t) 1s the standard deviation of the scalar J(x,t).
Using equation (2) Toor's results becomes

(A)

t t
(- P J o(t') dt! (24)
0 0

Let us recall that equations (23) and (24) refer to spatial homogeneity,
infinite rate chemistry, stoichiometric conditions and equal diffusion con-
stants of the two species. 1In the derivation Toor (ref. 3) employs Gaussian-
shape for the pj(¥,t) but remarks that this assumption may be relaxed.

Recent measurements of Bennani et al. (ref. 31), as well as extensive earlier
experimental work reviewed by Toor (ref. 3) and Brodkey (ref. 32) support equa-
tion (24). It is presently under investigation whether the Toor's result

(ref. 3) can be generalized for cases that are more complicated than simple
second-order reactions (Brodkey and Lewalle, ref. 33).

Let us examine now whether the Toor-result can be recovered via C/D model-
ing. Under stoichiometric conditions (J)t = (A)y - (B)y = 0. Inserting this
result into equation (7) and using equation (22a) we obtain the equation gov-
erning the time evolution of <(A)y.

d<A) a2

'EE‘E = -o(t) Ay, + o<;%> (25)

Equation (24) recovers if ap/ay » 0. This means that out of the family of
the C/D models only the Dopazo-0'Brien approximation leads to the Toor-result.

That other C/D models do not recover equation (24) can be easily seen by
considering the mixing frequency independent of time and incerting equation (5)
into equation (22b). Simple calculation results in the short time expansion:

(A)

-1 - wt + 0(w’t?) (26)
4

1

N |~

The Tinear term does not correspond to exp [-wt] unless aj/a; » 0.

We conclude that -- at least in the context of the fast chemistry approxi-
mation -- the application of the Dopazo-0'Brien model is equivalent tn Toor's
result (ref. 3) represented by equation (24). This means that the numerous
experimental studies which investigate the validity of equation (24) can be
also used to investigate the Dopazo-0'Brien closure. Indeed, it is only by
comparison to data that it will become possible to decide between gifferent

molecular mixing models.

11



The equivalence of the Dopazo-0'Brien (ref. 2) closure and Toor's result
(ref. 3) is due to the long time asymptotic nature of both approaches. Theo-
retical discussion of the problem will be given in forthcoming paper of Kosaly
(ref. 34).

It is natural, at this point, to raise again the sensitivity issue. Since
we know that the Dopazo-0'Brien (ref. 2) model recovers the Toor-result, let
us investigate, how far the other C/D models deviate from it. The sensitivity
investigation was performed with time independent mixing frequency.

Figure 4 shows the time evolution of (A)y/(A), for different C/D models.
The A(a) = &(a - ag), ag = 0.1 calculation is not needed this time, since the
Dopazo-0'Brien (ref. 2) result was proved to be equivalent to equation (24),
and can be represented by a simple exponential. It is the Curl-prediction that
deviates the most from the Toor-curve. The results coming from the model of
Janicka et al. (ref. 6) are practically identical to the Curl-results (ref. 1).
Figure 5 shows the deviation from the Dopazo-0'Brien (Toor) curve. The maximum
deviation between the Curl-prediction and the Toor-exponential is -16 percent.

It is important to point out a basic difference between inert mixing and
mixing with chemical reaction. The model independency of the first three
moments in the inert mixing case limits the sensitivity of the pdf to the
choice of the A(a)-model. The situation is markedly diffeient if mixing is
accompanied by chemical reaction. Figures 4 and 5 demonstrate that in this
case even the first moment depends on the choice of the molecular mixing clo-
sure model. We will show in the next section that model sensitivity is even
stronger for the higher moments.

In order to demonstrate the influence of strong space dependence on the
deviation between different models we again consider the flow case described
in connection with figures 2 and 3. Reactant A 1is injected into the flow
through the nozzle, while B 1is dispersed in the quiescent surroundings.
Figure 6 shows the radial dependence of the average concentration of A at
x = 10D downstream from the nozzle. The concentration is normalized to unity
at the nozzle inlet. The radial distance is nondimensionalized as discussed
earlier.

The calculation was performed in the fast chemistry approximation using
different C/D models to evaluate the pdf of the conserved scalar J = A-B.
The space dependence of the mixing frequency was computed via equation (13).
Since equation (24) refers only to the spatially homogeneous case, the Dopazo-
0'Brien (ref. 2) model was again represented by A(a) = &§(a - ag), ag = 0.1.
Figure 6 demonstrates the equivalence of the different C/D models for calculat-
ing average concentration in this strongly space dependent case.

5. THE HIGHER MOMENTS OF CONCENTRATION WITH AND WITHOUT CHEMICAL REACTION

In a recent work Hsieh and 0'Brien (ref. 4) investigated the mixing of
two species A and B in the turbulent flow downstream of a grid. The two
species were considered to be present in stoichiometric proportion. Species
A was introduced on the upper half of the grid and species B on the lower
half. The equation for the joint pdf of A and B was closed using a gradi-
ent diffusion model for the convection terms and Curl's approach for the
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molecular mixing term. OQOur present interest is related to the axial depend-
ence of their calculated mean, variance, skewness, and kurtesis values.

Hsieh and O'Brien (ref. 4) study the role of the chemical reaction in the
behavior of the above quantities numerically by comparing calculated values
with and without reaction. The effect of reaction reduces the mean at every
axial location, whilst reduces the variance below the centerline and increases
above it. The role of reaction in modifying the skewness and kurtosis values
is conspicuously muted. The results without reaction compare will with experi-
mental data referring to a half heated grid (Wu and 0'Brien, ref. 9; LaRue and
Libby, ref. 35). Measured results for the reacting case are not available.

The chemical reaction follows the kinetic scheme A + B » P and is of
moderate rate, of order unity, compared to the turbulent tim2 scales in the
model. 1In order to find out whether the interesting behavior of the skewness
and the kurtosis is due to moderate rate chemistry or reflects a more general
law, Hsieh and 0'Brien (ref. 4) suggest studying the issue by commaring
results without chemical reaction to corresponding infinite rate chemistry
calculations.

In the present section, we investigate the problem in the homogeneous
incompressible flow case and assume that the two species are initially segre-
gated and homogeneously distributed in space (cf. eq. (18)). We consider stoi-
chiometric conditions and apply equation (21) to establish the plug-flow
counterpart of the geometrical arrangement by Hsieh and 0'Brien (ref. 4).

In the infinite rate chemistry case the concentration pdf pp(w,t) is
related to the pdf of J via equation (17'). pj(w,t) satisfies equations
(1a) to (1c) with the initial condition given in equation (20'). let
PA.m(¥,t) be the concentration pdf of A without chemical reaction. (The
suﬁscript "m" stands for "mixing only.") pA’m(w,t) will also satisfy equa-
tions (la) to (1c), its initial shape, however, will differ from the initial
shape of pj(w,t). Using equations (19a) and (21) we write

Pam(¥:0) = 7 8 = 1) + 3 5(¥) (21)

Let us calculate the mean and the central moments of the concentration.
We write the n-th central moment in the infinitely fast reaction case using
equation (17'):

.
I (v - A Ipp(v,t) dy

n

iy o (1) 2 €A - oy O

0
! n -1" n
- Jo(w -y Dty dv + S @l L (es)

Here (A)t p 1s the mean as defined in equation (22a). The subscript r
indicates infinitely fast reaction. (For the sake of simplicity the results
are presented in ¢y = 1 units.)

13



The nth central moment without reaction can be written as

1

[ n
.o(w <A>t,m) pA,m(w.t) dy

iy () = {a - <A>t,m)“)t’m

-1 1 n
- _o( - 5), Pa,m(¥rt) dv (29)
Writing equation (29) we used the result

1
)t,m T2
Since pg(w,t) and pap m(w,t) satisfy the same equation their difference

is due to their different initial shapes (cf. eqs. (20') and (27)). Simple
calculation provides the known result

(A (30)

-1 vy +1 e+l
pJ(t,w)—sz,m<. > ) ¥ =" o 02yt < (31)

Using equations (29) and (31) the n-th central moment without reaction can
be expressed via the pdf pj(y,t).
+1

uy () = i;—j Wyl dv (32)

We assume now that the mixing frequency is independent of time and use
equation (11) to write pj(w,t) in the Dopazo-0'Brien approximation (ref. 2):

py(est) = 3 6(b - &%) + T sw + ™) (1)

Inserting equation (11') into equations (22a), (28), and (32) straight
forward calculation results in

-wt

(A) e (33a)

21
t,r 2

n
~ 1+ (-1)" -net
“n,r(t) = “n,m(t) = i+ e (33b)

Equation (33a) says that the mean with reaction is always smaller than
without it ((A)¢ m = 1/2, an obvious result. Equation (33b) is more interest-
ing. It says that, in the Dopazo-0'Brien approximation, infinite rate chemis-
try and pure mixing result in the same central moments. Restricting the
discussion to n =2, 3, 4 we conclude that, in the present model, the vari-
ance, skewness, and kurtosis of the concentration do not depend on chemistry.

Let us recall that equation (33b) was derived using the Dopazo-0'Brien
(ref. 2) model. Figures 7 and 8 show the variance, skewness, and kurtosis
versus dimensionless time for different C/D models.

For each model two curves are shown; one without chemistry, the other with
infinite rate chemistry. In the Dopazo-0'Brien (ref. 2) approximation the two
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curves coincide (cf. eq. (33b)). Since in the pure mixing 1imit the variance
Is model independent, the Dopazo-0'8Brien variance represents the pure mixing
case for the other two models as well.

Figures 7 and 8 show that both Curl's (ref. 1) model and the approxima-
tion of Janicka et al. (ref. 6) provide different results. The equality of
the central moments with and without chemistry appears to be characteristic of
the Dopazo-0'Brien (ref. 2) closure rather than a general pruperty of C/D
modeling.

While Hsieh and 0'Brien (ref. 4) calculate radial profiles, our results
refer to the axially averaged concentration. This limits the possibility of
comparing the two sets of results. Keeping this limitation in mind, we con-
clude, nevertheless, that the Curl-results seen on figures 7(a) and (b) contra-
dict their finding that the skewness and kurtosis do not depend on chemistry
in this model. One speculates that it is the use of moderate rate chemistry
that makes the skewness and kurtosis profiles similar to the profiles calcula-
ted with pure mixing. Increasing the rate of chemical reactions would probably
change the results of Hsieh and 0'Brien (ref. 2) considerably.

6. SUMMARY AND CONCLUSIONS

A generalized coalescence-dispersion (C/D) model has been introduced by
Pope (ref. 17). The closures of Dopazo and 0'Brien (ref. 2) and Curl (ref. 1)
can be recovered from this general model as limiting cases. Results obtained
by these two models "bracket" the range of results one may obtain via any other
C/0 model.

In case of inert scalar mixing for all C/D models studied the first three
moments are the same. The fourth moment may depend quite considerably on the
model. It is shown that, no matter how different the models of Curl (ref. 1)
and Janicka et al. (ref. 6) seem to be one must not expect substantial differ-
ence when applying these two closures. Differences can, however, be expected
between Curl's model and an opposite category of models whose extreme version
is the closure of Dopazo and 0'Brien (ref. 2).

Space dependence diminishes the sensitivity to the molecular mixing model.
Since Curl's model is the least burdening on computer resources, once we know
that the case is not sensitive to the molecular mixing model it is advisable to
use Curl's approach.

In order to judge the sensitivity of the results to the molecular mixing
model it is important to point out a basic difference between inert scalar mix-
ing and mixing with chemical reaction. The model independerce of the first
three moments in the inert mixing case understandably limits the dependence of
the pdf on the choice of the molecular mixing model. The situation is mark-
edly different if turbulent mixing is accompanied by chemical reaction. 1In
the present paper the limiting case of infinitely fast chemistry was used to
demonstrate that even the first moment of the reactant concentration is sensi-
tive to molecular mixing (figs. 4(a) and (b)). The model dependence of the
higher moments is even stronger (figs. 7 to 8).

New insight can be gained into the nature of C/D modeling by relating this
method to a result of Toor (ref. 3) who established a relationship between the

15



average concentration of a reactant and the mixing frequency (cf. eq. (24)).
Toor's result was derived assuming spatial homogeneity, second-order, infinite
rate chemistry at stoichiometric conditions and equal diffusivities of the two
species. Experimental investigations reviewed by Toor (ref. 3) and Brodkey
(ref. 32) seem to support Toor's result. This means that the above experimen-
tal investigations contain valuable information on the validity of the Dopazo-
0'Brien closure.

Hsieh and 0'Brien (ref. 4) studied the mixing of two reactants in the tur-
bulent flow downstream of a grid. They investigated the role of chemical reac-
tion by comparing numerically the higher moments calculated with and without
reaction. They modeled the convection term by gradient diffusion and the
molecular mixing term via Curl's approach (ref. 1). They employed moderate
rate chemistry and found that the skewness and kurtosis of the reactant concen-
tration are roughly identical with and without chemistry.

The possible reason behind this finding was investigated by comparing
infinite rate chemistry and pure mixing results in the spatially homogeneous
case. Straightforward mathematics shows that Dopazo-0'Brien (ref. 2) model
results in equal central moments in the presence and in the absence of chemi-
cal reaction. The equality of the central moments, however, appears to be a
characteristic of the Dopazo-0'Brien (ref. 20 closure only. It does not hold
if other models, e.g. (ref. 1), are applied. Since Hsieh and O'Brien (ref. 4)
used Curl's model we conclude that their skewness and Kurtosis result is due
to moderate rate chemistry.

Since C/D modeling is fundamentally phenomenological in nature, compari-
son to data is the only way to decide its validity. The sensitivity of the
first and higher moments of the reactant concentration to the molecular mixing
model suggests that measured data in a plug flow reactor and simulated data
inhomogeneous flow may provide useful data for model validation.
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TABLE I. - VALUES OF vy OEFINED
IN EQUATION (10e) FOR DIFFERENT
C/D MODELS
[Initia) distribution given

by eq. (14).]

Mode] Y Kurtosis at
wt = ]

Cur) 0.5 3.5
Janicka et al. .4 2.9
Dopazo-0'Brien | 0 1

2.5010”"!

O curL
2.0 — O JUANICKA ET AL.
4y = 0.1 (DOPAZO AND O'BRIEK)

FIGURE 1.- PROBABILITY DENSITY FUNCTIONS VERSUS CON-
CENTRATION AT wt = 0.96. THE DOPAZO-O’BRIEN (21
MODEL IS APPROXIMATELY REPRESENTED BY A(@) = §
(a-ay). ap = 0.1. (BINARY INITIAL DISTRIBUTION).
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FIGURE 7. - VARIANCE OF A VERSUS DIMENSIONLESS
TIME WITH INFINITE RATE CHEMISTRY AND WITH PURE
MIXING. 1IN THE DOPAZO-0’BRIEN APPROXIMATION,
THE REACTING AND NONREACTING RESULTS COINCIDE.
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